Efficient and Effective Similarity Search over Bipartite Graphs

Renchi Yang · National University of Singapore
Outline

• Background
 • Problem Definition
 • Baseline Solutions and Challenges
• Proposed Solution Approx-BHPP
 • An Overview
 • Selective and Sequential Push
 • Power Iteration-based Push
• Experiments
 • Query Rewriting and Item Recommendation
 • Efficiency Evaluation
Background

Similarity Search over Bipartite Graphs

Query Rewriting in Search Engine

Product Recommendation

Online Advertising

Drug–target Prediction

Efficient and Effective Similarity Search over Bipartite Graphs
BHPP

- Hidden Personalized PageRank (HPP)

A bipartite graph G

$O(|U|^2)$ cost in the worst case

Steps: 0 1 2 3 4
$W(u_1): u_1 \rightarrow u_3 \rightarrow u_4 \rightarrow u_2 \rightarrow u_3$

$\pi(u_1, u_3) = \Pr[W(u_1) \text{ stops at } u_3]$

α probability to stop at current node

$(1 - \alpha)$ probability to jump to an out-neighbour

Efficient and Effective Similarity Search over Bipartite Graphs
BHPP

• Bidirectional Hidden Personalized PageRank

\[\beta(u_1 + u_3) = \pi(u_1, u_3) + \pi(u_3, u_1) \]

measures the similarity between nodes \(u_1 \) and \(u_3 \) from the perspectives of both.
Problem Definition

- **ϵ-Approximate BHPP Query**
- **Input:** A bipartite graph G with
 - 2 disjoint node sets U and V
 - a query node $u \in U$
 - an absolute error threshold ϵ

- **Output:** $\forall u_i \in U$, an approximate BHPP value $\beta'(u, u_i)$ such that
 $$|\beta'(u, u_i) - \beta(u, u_i)| \leq \epsilon$$
Baseline Solutions

- Monte Carlo

A bipartite graph G

Steps: 0 1 2 3 4 5 6

$W(u_1): u_1 \rightarrow v_1 \rightarrow u_2 \rightarrow v_2 \rightarrow u_2 \rightarrow v_1 \rightarrow u_3$

- If current node $x \in U$
 - α probability to stop at current node
 - $(1 - \alpha)$ probability to jump to randomly jump to an out-neighbour
- Otherwise
 - jump to randomly jump to an out-neighbour

$\pi_f(u_1, u_3) = \#\text{walks ending at } u_3/\#\text{walks}$

$|\pi_f(u, u_i) - \pi(u, u_i)| \leq \varepsilon \forall u_i \in U$

Too many random walks
Baseline Solutions

• Power Iteration

A bipartite graph G

$$u_1 \ u_2 \ u_3 \ u_4 \ \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} u_1 & u_2 & u_3 & u_4 \end{bmatrix}$$

$$v_1 \ v_2 \ v_3 \ v_4 \ \begin{bmatrix} 1/4 & 1/4 & 1/4 & 1/4 \end{bmatrix} \times \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \end{bmatrix}$$

Weighted sum

$$\left| \pi_f(u, u_i) - \pi(u, u_i) \right| \leq \varepsilon \ \forall u_i \in U$$

Too many iterations
Baseline Solutions

- Selective Push

Residue $r = 1, \pi = 0$

A bipartite graph G

$\alpha = 0.2, \epsilon = 0.09$

until residue ≤ 0.09

$|\pi_b(u, u) - \pi(u, u)| \leq \epsilon \forall u \in U$
Baseline Solutions

• Monte Carlo + Selective Push (MCSP)
 • Random walks from u: $|\pi_f(u, u_i) - \pi(u, u_i)| \leq \epsilon/2 \ \forall u_i \in U$
 • Selective pushes from u: $|\pi_b(u_i, u) - \pi(u_i, u)| \leq \epsilon/2 \ \forall u_i \in U$
 • Let $\beta'(u, u_i) = \pi_f(u, u_i) + \pi_b(u_i, u)$ be approximate BHPP

• Power Iteration + Selective Push (PISP)
 • Power iterations from u: $|\pi_f(u, u_i) - \pi(u, u_i)| \leq \epsilon/2 \ \forall u_i \in U$
 • Selective pushes from u: $|\pi_b(u_i, u) - \pi(u_i, u)| \leq \epsilon/2 \ \forall u_i \in U$
 • Let $\beta'(u, u_i) = \pi_f(u, u_i) + \pi_b(u_i, u)$ be approximate BHPP
Challenges

- **Monte Carlo**
 - Too many random walks needed
 - Time complexity: $O\left(\frac{\log(|U|/\epsilon)}{\epsilon^2}\right)$

- **Power Iteration**
 - Too many iterations of matrix-vector multiplications
 - Time complexity: $O(|E| \cdot \log\left(\frac{1}{\epsilon}\right))$

- **Selective Push**
 - Practically efficient except the cases
 - ϵ is very small
 - graphs have high average degrees
 - Time complexity: $O\left(|E| \cdot \frac{1}{\epsilon}\right)$ in the worst case

How?
Proposed Solution: An Overview

- A lemma: $\frac{\pi(u, u_i)}{d(u_i)} = \frac{\pi(u_i, u)}{d(u)}$, $d(u)$ is the degree of node u
 - Invoking Selective Push to compute $\pi_b(u_i, u) \forall u_i \in U$
 - No need to compute $\pi_f(u, u_i) \forall u_i \in U$ from scratch
- How to ensure accuracy guarantee & improve time complexity & retain practical efficiency? A combination approach

$$\epsilon' = |V| + |E|, \ \epsilon = |V| - |E|$$

Residue sum

$$\epsilon' = \frac{|E| - \sqrt{|U| \cdot |V|}}{2|E| - \sqrt{|U| \cdot |V|}} \cdot \epsilon$$

Efficient and Effective Similarity Search over Bipartite Graphs
Proposed Solution

Selective and Sequential Push

- **Drawbacks of the Selective Push**
 - u_2, u_4, \ldots are not selected here but will be selected in next round
 - More push operations are caused
 - More rounds of pushes needed for v_1
 - In each round, v_1 performs 99 pushes
 - Bad memory access patterns
 - Selecting nodes leads to random access to node list

$\alpha = 0.2, \epsilon_b = 0.06$

![Graph Diagram]
Proposed Solution

Selective and Sequential Push

• Solution:
 • If the \#pushes conducted > the cost of power iterations
 • Switch to the sequential push, i.e., performing pushes from every node with a positive residue, until
 • every residue \leq \epsilon_b or
 • the sum of residues \leq \epsilon_b

• Result:
 • Time complexity is bounded by
 \[O(|E| \cdot \log\left(\frac{1}{\epsilon}\right)) \]
Proposed Solution

Power Iteration-based Push

- A lemma: $\frac{\pi(u, u_i)}{d(u_i)} = \frac{\pi(u_i, u)}{d(u)}$, $d(u)$ is the degree of node u
 - No need to compute $\pi_f(u, u_i) \forall u_i \in U$ from scratch
- Steps:
 - Let $\pi_b(u_i, u), r(u_i) \forall u_i \in U$ be the output of the Selective and Sequential Push
 - Transform: $\pi_f(u, u_i) = \frac{d(u_i)}{d(u)} \cdot \pi_b(u_i, u) \forall u_i \in U$
 - Perform selective pushes until
 - every residue $r(u_i) \leq \frac{d(u_i)}{d(u)} \cdot \frac{\epsilon - \epsilon_b}{\lambda}$ or
 - the #pushes conducted > the cost of power iterations
 - switch to performing t power iterations
 - t is determined by $\epsilon - \epsilon_b$ and residues $O(|E| \cdot \log(\frac{1}{\epsilon}))$
Experiments

Table 1: Statistics of click graphs.

| Name | $|U|$ | $|V|$ | $|E|$ | #clicks | #impressions |
|------------|-----|-----|------|-------|-----------|-------------|
| KDDCup [4] | 255,170 | 1,848,114 | 2,766,393 | 8,217,633 | 121,232,353 |

Table 2: Statistics of user-item graphs.

| Name | $|V|$ | $|U|$ | $|E|$ | weight |
|-----------------|-----|-----|------|-------|
| DBLP [26] | 6,001 | 1,308 | 29,256 | #papers |
| MovieLens [1] | 6,040 | 3,706 | 1,000,209 | ratings |
| Last.fm [3] | 359,349 | 160,168 | 17,559,530 | #plays |
| Amazon-Games [5]| 826,767 | 50,210 | 1,324,753 | ratings |
Efficient and Effective Similarity Search over Bipartite Graphs

Query Efficiency

MCSP = Monte Carlo + Selective Push
PISP = Power Iteration + Selective Push
\(\alpha = 0.15, p_f = 10^{-6} \)

Result: ApproxBHPP outperforms all competitors, often by an order of magnitude
Query Rewriting

Setup:
- 20% edges removed
- evaluate the top-k ordering of queries via NDCG

Result
- BHPP consistently outperforms other similarity measures
- on Avito, at least 2% over state-of-the-art results

Efficient and Effective Similarity Search over Bipartite Graphs
Item Recommendation

$k = 10$

Similarity	DBLP		Movielens		Last.fm		Amazon-Games	
-------------	------							
	precision@k	recall@k	precision@k	recall@k	precision@k	recall@k	precision@k	recall@k
BHPP	0.167	0.164	0.405	0.289	0.313	0.231	0.248	0.187
HPP	0.14	0.138	0.224	0.161	0.305	0.223	0.194	0.15
Pearson	0.037	0.037	0.106	0.074	0.126	0.095	0.056	0.044
Jaccard	0.158	0.157	0.272	0.194	0.287	0.213	0.08	0.062
SimRank	0.151	0.15	0.245	0.177	0.239	0.169	0.127	0.084
CoSimRank	0.115	0.113	0.186	0.137	0.304	0.216	0.156	0.121
PPR	0.149	0.146	0.342	0.245	0.28	0.206	0.188	0.143
SimRank++	0.127	0.126	0.243	0.176	0.241	0.171	0.171	0.118
P-SimRank	0.127	0.127	0.221	0.164	0.226	0.159	0.14	0.088

$k = 5$

Similarity	DBLP		Movielens		Last.fm		Amazon-Games	
-------------	------							
	precision@k	recall@k	precision@k	recall@k	precision@k	recall@k	precision@k	recall@k
BHPP	0.165	0.115	0.609	0.22	0.441	0.163	0.36	0.136
HPP	0.15	0.097	0.291	0.105	0.416	0.15	0.28	0.108
Pearson	0.095	0.064	0.091	0.031	0.178	0.067	0.104	0.039
Jaccard	0.139	0.095	0.322	0.114	0.307	0.093	0.112	0.041
SimRank	0.157	0.109	0.325	0.118	0.356	0.112	0.209	0.088
CoSimRank	0.152	0.102	0.322	0.108	0.415	0.152	0.243	0.098
PPR	0.127	0.098	0.475	0.17	0.393	0.145	0.272	0.104
SimRank++	0.15	0.101	0.325	0.118	0.367	0.12	0.277	0.103
P-SimRank	0.15	0.1	0.32	0.112	0.343	0.108	0.226	0.094

- Remove 20% edges and evaluate top-k recommendation performance via _precision@k_ and _recall@k_
- BHPP consistently yields the best performance
Thanks

Efficient and Effective Similarity Search over Bipartite Graphs