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Bipartite Network Embedding (BNE)

Input: A bipartite graph 𝐺 = (𝑈, 𝑉, 𝐸)
2 disjoint node sets 𝑈 and 𝑉
the inter-set edges between nodes in 𝑈 and 𝑉

Output: For every node 𝑢! ∈ 𝑈 and 𝑣" ∈ 𝑉
A length-𝑘 embedding vector 𝐔[𝑢!]
A length-𝑘 embedding vector 𝐕[𝑣"]
𝐔 𝑢! and 𝐕[𝑣"] capture the hidden topological 
features surrounding 𝑢! and 𝑣"
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Applications

Link Prediction
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Applications

Recommendation
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Existing Solutions

Traditional Network Embedding Methods
DeepWalk, node2vec, LINE, etc.
Low-quality embeddings as they overlook the bipartite structures

BNE Methods
BiNE, BiGI, etc.
Incur substantial computational costs due to sampling a large number of 
random walks or expensive training courses

Embedding-based Collaborative filtering (CF) methods
BPR, NCF, NGCF, LightGCN, etc.
Only for recommendation purpose and most only support unweighted bipartite
graphs (implicit feedback)
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Our Solution: Objective Function

For heterogeneous nodes
MHP 𝑝(𝑢! , 𝑣") measures the strength of association between 𝑢! , 𝑣"
The dot product of embeddings preserves strength of connections.

𝒪! = min
𝐔,𝐕∈ℝ|𝑼|&𝒌

1
|𝑈| / |𝑉|

1
/( ∈0,1)∈2

𝐔 𝑢3 / 𝐕 𝑣4 − 𝑝(𝑢3 , 𝑣4)
"
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Good for ranking tasks,
e.g., recommendation.

𝐔[𝑢%]

𝐕[𝑣%]! high≈ 𝑝(𝑢", 𝑣")

𝐔[𝑢#]

𝐕[𝑣%]! low≈ 𝑝(𝑢$, 𝑣")
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Our Solution: Objective Function

For homogeneous nodes
MHS 𝑠(𝑢#, 𝑢$) measures similarity of 𝑢#, 𝑢$ in topology
Similar nodes have similar embeddings.

𝒪* = min
𝐔∈ℝ|𝑼|(𝒌

1
|𝑈|*

*
.*,.+∈0

𝐔[𝑢1]
𝐔[𝑢1] *

−
𝐔[𝑢2]
𝐔[𝑢2] * *

*

− 2(1 − 𝑠(𝑢1 , 𝑢2))

*

Unified objective function 𝒪 = 𝒪# + 𝒪$
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Our Solution: MHP

Multi-Hop Heterogeneous Proximity (MHP)
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𝑞" 𝑢3, 𝑣# = 𝑤 𝑢3, 𝑣* ×𝑤 𝑣*, 𝑢" ×𝑤 𝑢", 𝑣#
+𝑤 𝑢3, 𝑣" ×𝑤 𝑣", 𝑢" ×𝑤 𝑢", 𝑣#

= (0.4×0.6 + 0.5×0.5)×0.1 = 0.049

Let 𝑃"ℓ6! be the set of paths of
length-(2ℓ + 1)

Length-3 paths 𝑃#:
• path 1: 𝑢! → 𝑣" → 𝑢# → 𝑣$
• path 2: 𝑢! → 𝑣# → 𝑢# → 𝑣$
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ℓ'(

)
𝜔(ℓ) - 𝑞!ℓ*%(𝑢%, 𝑣")

• 𝜔(ℓ) is the weight for length ℓ
• Uniform distribution 
• Geometric distribution 
• Poisson distribution

MHP 𝑝 𝑢3, 𝑣# describes the overall
strength of multi-hop connections 

between heterogeneous nodes 𝑢3 and 𝑣#
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Our Solution: MHS

Multi-Hop Homogeneous Similarity (MHS)
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𝑞* 𝑢3, 𝑢* = 𝑤 𝑢3, 𝑣3 ×𝑤 𝑣3, 𝑢*
+𝑤 𝑢3, 𝑣* ×𝑤 𝑣*, 𝑢*

= 0.4×0.6 + 0.5×0.5 = 0.49

Let 𝑃"ℓ be the set of paths of
length-2ℓ

Length-2 paths 𝑃":
• path 1: 𝑢! → 𝑣! → 𝑢"
• path 2: 𝑢! → 𝑣" → 𝑢"

𝑠 𝑢!, 𝑢" =
ℎ(𝑢!, 𝑢#)

ℎ(𝑢!, 𝑢!) / ℎ(𝑢#, 𝑢#)

ℎ 𝑢!, 𝑢" =1
ℓ78

9
𝜔(ℓ) / 𝑞"ℓ(𝑢!, 𝑢")

• 0 ≤ 𝑠 𝑢%, 𝑢# ≤ 1

• 𝜔(ℓ) is the weight for length ℓ
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ℎ 𝑢#, 𝑢% = ℎ 𝑢#, 𝑢! > ℎ(𝑢%, 𝑢!)
Large-degree nodes introduce distortion!
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Our Solution: Overview

Edge weight matrix 𝐖 ∈ ℝ|𝑼|×|𝑽|,𝐖[𝑢! , 𝑣"] is the weight of edge (𝑢! , 𝑣")

Matrix 𝐇 = ∑ℓ*+, 𝜔(ℓ) 8 𝐖𝐖- ℓ, 𝐇[𝑢! , 𝑢"] = ℎ(𝑢! , 𝑢")
Theoretically, optimizing objective 𝒪 = 𝒪# + 𝒪$ is equivalent to finding

Scalable and Effective Bipartite Network Embedding
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Our Solution: Overview

Edge weight matrix 𝐖 ∈ ℝ|𝑼|×|𝑽|,𝐖[𝑢! , 𝑣"] is the weight of edge (𝑢! , 𝑣")

Matrix 𝐇 = ∑ℓ*+, 𝜔(ℓ) 8 𝐖𝐖- ℓ, 𝐇[𝑢! , 𝑢"] = ℎ(𝑢! , 𝑢")
Challenges:

The computation of matrix 𝐇 requires 𝑂(|𝑈|6) space and 𝑂(|𝐸| , |𝑉|) time
Finding the top-𝑘 eigenvectors of 𝐇 takes 𝑂(|𝑈|6 , 𝑘) time
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Our Solution: GEBE

Krylov subspace iterations
Find top-𝑘 eigenvectors and eigenvalues in the symmetric matrix H iteratively
Max number of iterations 𝑡 (e.g., 200)

Scalable and Effective Bipartite Network Embedding

randomly
initialize 𝐙 Computing 𝐇𝐙 QR decomposition over 𝐇𝐙 𝐙 and 𝚲

not converged or #iterations<t

output
𝑂(|𝑈|! - 𝑘) time 𝑂(𝑘! - |𝑈|) time𝑂(𝑘 - |𝑈|) time

bottleneck
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Our Solution: GEBE

Power iterations
𝐇𝐙 = ∑ℓ=>? 𝜔(ℓ) , 𝐖𝐖@ ℓ , 𝐙
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Our Solution: GEBE

Limitations of GEBE
𝑡 Krylov subspace iterations are needed to approximate the
eigenvectors 𝐙 and eigenvalues 𝚲

𝑡 is large, more QR decomposition & matrix multiplication costs
𝑡 is small, inaccurate 𝐙 and 𝚲 → compromised quality

𝜏 power iterations are needed to approximate 𝐇𝐙
𝝉 is large, more matrix multiplication costs
𝝉 is small, higher-order information is not preserved → compromised quality

Scalable and Effective Bipartite Network Embedding
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Our Solution: GEBEp

If 𝜔(ℓ) follows Poisson distribution, 𝐇 = ∑ℓ*+/ 0@A1ℓ

ℓ!
8 𝐖𝐖- ℓ

The top-𝑘 singular value decomposition of 𝐖
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since 𝚿 is

unitary
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Our Solution: GEBEp

If 𝜔(ℓ) follows Poisson distribution, 𝐇 = ∑ℓ*+/ 0@A1ℓ

ℓ!
8 𝐖𝐖- ℓ

Using the matrix property 𝑒𝐌 = ∑ℓ*+/ 𝐌ℓ

ℓ!

𝐇 =
𝑒)𝐖𝐖A

𝑒)
=
𝑒)𝚽𝚺B𝚽A

𝑒)
= 𝚽

𝑒)𝚺B

𝑒)
𝚽-
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𝐔 = 𝚽 ,
𝑒C𝚺<

𝑒C
& 𝐕 = 𝐖𝐓 , 𝐔

The top-𝑘 singular value decomposition of 𝐖

• takes 𝑂 ( 𝐸 - 𝑘 + 𝑈 - 𝑘!) - 345(|6|)7 time

• takes 𝑂 𝑈 + 𝑉 - 𝑘 + |𝐸| space
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Experiments: Methods

Our methods: GEBE, GEBE4

BNE methods
BiNE [SIGIR’18]
BiGI [WSDM’21]

Network embedding methods
DeepWalk [KDD’14]
Node2vec [KDD’16]
LINE [WWW’15]
NRP [PVLDB’20]

All methods are implemented in Python

Scalable and Effective Bipartite Network Embedding

Collaborative filtering (CF) methods
BPR [UAI’09]
NCF [WWW’17]
NGCF [SIGIR’19]
LightGCN [SIGIR’20]
LCFN [ICML’20]
LR-GCCF [AAAI’20]
SCF [RecSys’18]
GCMC [KDD’19]
CSE [WWW’19]

for implicit
data

for explicit
data
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Experiments: Link Prediction

Unweighted bipartite graphs
randomly sample 60% edges as the training data
remaining 40% edges and an equal number of negative edges as test data
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Name |𝑼| |𝑽| |𝑬| Type

Wikipedia 15K 3.2K 64K Author-page-edit

Pinterest 55.2K 9.9K 1.5M User-image-pin

Yelp 31.7K 38K 1.56M User-restaurant-visit

MIND 877K 97.5K 18.2M User-news-click

Orkut 2.78M 8.73M 327M User-group-affiliation
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Experiments: Link Prediction

The highest scores are in bold

The 2nd (3rd) best results are 
double- (single-) underlined

GEBE8 is consistently the best

MHS is important for link
prediction

BiNE and CSE consider the
preservation of relationships
between homogeneous nodes,
but totally different from MHS
Only GEBE & GEBE. consider
multi-hop similarities between
homogeneous nodes
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Experiments: Top-10 Recommendation

Weighted bipartite graphs.
randomly sample 60% edges as the training data
use the remaining 40% edges as the ground-truth for testing
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Name |𝑼| |𝑽| |𝑬| Type

DBLP 6K 1.3K 29.3K Author-venue-count

MovieLens 69.9K 10.7K 10M User-movie-rating

Last.fm 359.4K 160.2K 17.56M User-music-#play

Netflix 480.2K 17.8K 100.48M User-movie-rating

MAG 10.54M 2.78M 1.1B Paper-word-occurrence



© Copyright National University of Singapore. All Rights Reserved. 

Experiments: Top-10 Recommendation

3 popular metrics: F1, 
NDCG, and MRR

GEBE8 performs
best in most cases

Most CF-based
methods neglect
edge weights (only
support implicit data),
leading to inferior
performance

MHP is important for
recommendation

Scalable and Effective Bipartite Network Embedding
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Experiments: Efficiency
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GEBE8 is faster often by 
orders of magnitude.

On MAG (1.1B edges)
GEBE5 takes 1.7 hrs.
NRP needs 11.8 hrs.
Other methods fail to
finish within 3 days
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