

Scalable and Effective Bipartite Network Embedding

Renchi Yang, Jieming Shi, Keke Huang, Xiaokui Xiao

Bipartite Network Embedding (BNE)

- Input: A bipartite graph G = (U, V, E)
 - 2 disjoint node sets U and V
 - the inter-set edges between nodes in U and V
- Output: For every node $u_i \in U$ and $v_j \in V$
 - A length-k embedding vector $\mathbf{U}[u_i]$
 - A length-k embedding vector $\mathbf{V}[v_j]$
 - U[u_i] and V[v_j] capture the hidden topological features surrounding u_i and v_j

Set of Targe

Proteins

Applications

Link Prediction

Applications

Recommendation

video streaming websites

E-commerce websites

Existing Solutions

Traditional Network Embedding Methods

- DeepWalk, node2vec, LINE, etc.
- Low-quality embeddings as they overlook the bipartite structures

BNE Methods

- ▶ BiNE, BiGI, etc.
- Incur substantial computational costs due to sampling a large number of random walks or expensive training courses
- Embedding-based Collaborative filtering (CF) methods
 - BPR, NCF, NGCF, LightGCN, etc.
 - Only for recommendation purpose and most only support unweighted bipartite graphs (implicit feedback)

Our Solution: Objective Function

- For heterogeneous nodes
 - MHP $p(u_i, v_j)$ measures the strength of association between u_i, v_j
 - The dot product of embeddings preserves strength of connections.

Our Solution: Objective Function

For homogeneous nodes

- MHS $s(u_i, u_j)$ measures similarity of u_i, u_j in topology
- Similar nodes have similar embeddings.

Good for classification tasks, e.g., link prediction.

• Unified objective function $\mathcal{O} = \mathcal{O}_1 + \mathcal{O}_2$

Our Solution: MHP

Multi-Hop Heterogeneous Proximity (MHP)

Let $P_{2\ell+1}$ be the set of paths of length- $(2\ell + 1)$

Length-3 paths P_3 :

- path 1: $u_1 \rightarrow v_2 \rightarrow u_3 \rightarrow v_4$
- path 2: $u_1 \rightarrow v_3 \rightarrow u_3 \rightarrow v_4$

 $q_{3}(u_{1}, v_{4}) = w(u_{1}, v_{2}) \times w(v_{2}, u_{3}) \times w(u_{3}, v_{4})$ $+ w(u_{1}, v_{3}) \times w(v_{3}, u_{3}) \times w(u_{3}, v_{4})$ $= (0.4 \times 0.6 + 0.5 \times 0.5) \times 0.1 = 0.049$

 $p(u_1, v_4) = \sum_{\ell=0}^{\tau} \omega(\ell) \cdot q_{2\ell+1}(u_1, v_4)$

- $\omega(\ell)$ is the weight for length ℓ
 - Uniform distribution
 - Geometric distribution
 - Poisson distribution

MHP $p(u_1, v_4)$ describes the overall strength of multi-hop connections between heterogeneous nodes u_1 and v_4

Our Solution: MHS

Multi-Hop Homogeneous Similarity (MHS)

Let $P_{2\ell}$ be the set of paths of length- 2ℓ

Length-2 paths *P*₂:

- path 1: $u_1 \rightarrow v_1 \rightarrow u_2$
- path 2: $u_1 \rightarrow v_2 \rightarrow u_2$

 $q_{2}(u_{1}, u_{2}) = w(u_{1}, v_{1}) \times w(v_{1}, u_{2})$ $+ w(u_{1}, v_{2}) \times w(v_{2}, u_{2})$ $= 0.4 \times 0.6 + 0.5 \times 0.5 = 0.49$

 $h(u_1, u_2) = \sum_{\ell=0}^{\tau} \omega(\ell) \cdot q_{2\ell}(u_1, u_2)$

• $\omega(\ell)$ is the weight for length ℓ

Our Solution: Overview

- Edge weight matrix $\mathbf{W} \in \mathbb{R}^{|\boldsymbol{U}| \times |\boldsymbol{V}|}$, $\mathbf{W}[u_i, v_j]$ is the weight of edge (u_i, v_j)
- Matrix $\mathbf{H} = \sum_{\ell=0}^{\tau} \omega(\ell) \cdot (\mathbf{W}\mathbf{W}^{\mathrm{T}})^{\ell}$, $\mathbf{H}[u_i, u_j] = h(u_i, u_j)$
- Theoretically, optimizing objective $\mathcal{O} = \mathcal{O}_1 + \mathcal{O}_2$ is equivalent to finding

Our Solution: Overview

- Edge weight matrix $\mathbf{W} \in \mathbb{R}^{|\mathbf{U}| \times |\mathbf{V}|}$, $\mathbf{W}[u_i, v_j]$ is the weight of edge (u_i, v_j)
- Matrix $\mathbf{H} = \sum_{\ell=0}^{\tau} \omega(\ell) \cdot (\mathbf{W}\mathbf{W}^{\mathrm{T}})^{\ell}$, $\mathbf{H}[u_i, u_j] = h(u_i, u_j)$
- Challenges:
 - The computation of matrix **H** requires $O(|U|^2)$ space and $O(|E| \cdot |V|)$ time
 - Finding the top-k eigenvectors of **H** takes $O(|U|^2 \cdot k)$ time

Our Solution: GEBE

Krylov subspace iterations

- Find top-k eigenvectors and eigenvalues in the symmetric matrix **H** iteratively
- Max number of iterations t (e.g., 200)

Our Solution: GEBE

Power iterations

 $\mathbf{H}\mathbf{Z} = \sum_{\ell=0}^{\tau} \omega(\ell) \cdot \left(\mathbf{W}\mathbf{W}^{\mathrm{T}}\right)^{\ell} \cdot \mathbf{Z}$

N O O

- No need to materialize **H**
- $\triangleright 0(k\tau \cdot |E|)$ time
- $O((|U| + |V|) \cdot k + |E|)$ space

Our Solution: GEBE

Limitations of GEBE

- t Krylov subspace iterations are needed to approximate the eigenvectors Z and eigenvalues Λ
 - t is large, more QR decomposition & matrix multiplication costs
 - ▶ t is small, inaccurate **Z** and Λ → compromised quality
- > τ power iterations are needed to approximate HZ
 - \bullet τ is large, more matrix multiplication costs
 - ▶ τ is small, higher-order information is not preserved \rightarrow compromised quality

Our Solution: GEBE^p

- If $\omega(\ell)$ follows Poisson distribution, $\mathbf{H} = \sum_{\ell=0}^{\infty} \frac{e^{-\lambda} \lambda^{\ell}}{\ell!} \cdot \left(\mathbf{W}\mathbf{W}^{\mathrm{T}}\right)^{\ell}$
- The top-k singular value decomposition of W

 $\Psi \Psi^{T} = I$ since Ψ is unitary

ACM SIGMOD PODS 2022

Our Solution: GEBE^p

If $\omega(\ell)$ follows Poisson distribution, $\mathbf{H} = \sum_{\ell=0}^{\infty} \frac{e^{-\lambda} \lambda^{\ell}}{\ell!} \cdot \left(\mathbf{W}\mathbf{W}^{\mathrm{T}}\right)^{\ell}$

• Using the matrix property $e^{\mathbf{M}} = \sum_{\ell=0}^{\infty} \frac{\mathbf{M}^{\ell}}{\ell!}$

$$\mathbf{H} = \frac{e^{\lambda \mathbf{W} \mathbf{W}^{\mathrm{T}}}}{e^{\lambda}} = \frac{e^{\lambda \mathbf{\Phi} \mathbf{\Sigma}^{2} \mathbf{\Phi}^{\mathrm{T}}}}{e^{\lambda}} = \mathbf{\Phi} \frac{e^{\lambda \mathbf{\Sigma}^{2}}}{e^{\lambda}} \mathbf{\Phi}^{\mathrm{T}}$$
$$\mathbf{I}$$
$$\mathbf{U} = \mathbf{\Phi} \cdot \sqrt{\frac{e^{\lambda \mathbf{\Sigma}^{2}}}{e^{\lambda}}} \quad \& \quad \mathbf{V} = \mathbf{W}^{\mathrm{T}} \cdot \mathbf{U}$$

$$\left[\begin{array}{c} & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$$

The top-k singular value decomposition of **W**

• takes $O\left((|E| \cdot k + |U| \cdot k^2) \cdot \frac{\log(|V|)}{\epsilon}\right)$ time

• takes
$$O((|U| + |V|) \cdot k + |E|)$$
 space

Experiments: Methods

- Our methods: GEBE, GEBE^p
- BNE methods
 - BiNE [SIGIR'18]
 - BiGI [WSDM'21]
- Network embedding methods
 - DeepWalk [KDD'14]
 - Node2vec [KDD'16]
 - LINE [WWW'15]
 - NRP [PVLDB'20]

- Collaborative filtering (CF) methods
 - BPR [UAI'09]
 - NCF [WWW'17]
 - NGCF [SIGIR'19]
 - LightGCN [SIGIR'20]
 - LCFN [ICML'20]
 - LR-GCCF [AAAI'20]
 - SCF [RecSys'18]
 - GCMC [KDD'19]
 - CSE [WWW'19]

- _ for implicit data
- for explicit data

All methods are implemented in Python

Experiments: Link Prediction

Unweighted bipartite graphs

- randomly sample 60% edges as the training data
- remaining 40% edges and an equal number of negative edges as test data

Name	U	<i>V</i>	<i>E</i>	Туре
Wikipedia	15K	3.2K	64K	Author-page-edit
Pinterest	55.2K	9.9K	1.5M	User-image-pin
Yelp	31.7K	38K	1.56M	User-restaurant-visit
MIND	877K	97.5K	18.2M	User-news-click
Orkut	2.78M	8.73M	327M	User-group-affiliation

Experiments: Link Prediction

Method	Wikipedia		Pinterest		Yelp		MIN	ND.	Orkut		
Method	AUC-ROC	AUC-PR	AUC-ROC	AUC-PR	AUC-ROC	AUC-PR	AUC-ROC	AUC-PR	AUC-ROC	AUC-PR	
GEBE ^p	0.964	0.965	0.728	0.701	0.799	0.803	0.959	0.956	0.95	0.958	
GEBE (Poisson)	0.959	0.964	0.722	0.698	0.796	0.799	0.951	0.949	0.95	0.958	
GEBE (Geometric)	0.949	0.959	0.718	0.696	0.795	0.796	0.944	0.942	0.928	0.934	
GEBE (Uniform)	0.951	0.96	0.715	0.697	0.794	0.796	0.942	0.941	0.928	0.932	
BiNE	0.956	0.964	0.704	0.647	<u>0.797</u>	0.801	-	-	-	-	
BiGI	0.954	0.96	0.697	0.641	0.762	0.754	-	-	-	-	
DeepWalk	0.899	0.84	0.659	0.563	0.663	0.622	-	-	-	-	
node2vec	0.866	0.838	0.66	0.566	0.674	0.643	-	-	-	-	
LINE	0.963	0.965	0.713	0.692	0.796	0.801	0.885	0.907	0.752	0.753	
NRP	0.929	0.941	0.712	0.689	0.781	0.785	0.924	0.909	0.911	0.912	
BPR	0.951	0.96	0.7	0.624	0.733	0.711	0.939	0.931	-	-	
NCF	0.947	0.952	0.691	0.622	0.749	0.732	0.914	0.911	-	-	
NGCF	0.96	0.964	0.703	0.637	0.772	0.764	-	-	-	-	
LightGCN	0.955	0.964	0.661	0.613	0.668	0.682	-	-	-	-	
GCMC	0.948	0.945	0.712	0.689	0.752	0.756	-	-	-	-	
CSE	0.944	0.954	0.719	0.656	0.761	0.759	0.949	0.947	0.858	0.856	
LCFN	0.922	0.932	0.707	0.682	0.687	0.692	-	-	-	-	
LR-GCCF	0.865	0.872	0.658	0.551	0.673	0.581	0.919	0.89	-	-	
SCF	0.936	0.944	0.719	0.697	0.748	0.753	-	-	-	-	

- The highest scores are in bold
- The 2nd (3rd) best results are double- (single-) underlined
- GEBE^p is consistently the best
- MHS is important for link prediction
 - BiNE and CSE consider the preservation of relationships between homogeneous nodes, but totally different from MHS
 - Only GEBE & GEBE^p consider multi-hop similarities between homogeneous nodes

Experiments: Top-10 Recommendation

Weighted bipartite graphs.

- randomly sample 60% edges as the training data
- use the remaining 40% edges as the ground-truth for testing

Name	U	<i>V</i>	<i>E</i>	Туре
DBLP	6K	1.3K	29.3K	Author-venue-count
MovieLens	69.9K	10.7K	10M	User-movie-rating
Last.fm	359.4K	160.2K	17.56M	User-music-#play
Netflix	480.2K	17.8K	100.48M	User-movie-rating
MAG	10.54M	2.78M	1.1B	Paper-word-occurrence

Experiments: Top-10 Recommendation

Method	DBLP			MovieLens		Last.fm		Netflix			MAG				
	F1	NDCG	MRR	F1	NDCG	MRR	F1	NDCG	MRR	F1	NDCG	MRR	F1	NDCG	MRR
GEBE ^p	0.214	0.261	0.601	0.266	0.304	0.558	0.534	0.554	0.778	0.342	0.366	0.611	0.265	0.286	0.468
GEBE (Poisson)	0.212	0.258	0.581	0.256	0.294	0.548	0.53	0.549	0.766	0.334	0.354	0.586	0.261	0.284	0.465
GEBE (Geometric)	0.209	0.255	0.579	0.255	0.294	0.55	0.53	0.549	0.75	0.334	0.354	0.582	0.256	0.284	0.467
GEBE (Uniform)	0.209	0.255	0.579	0.253	0.292	0.55	0.53	0.55	0.755	0.334	0.353	0.58	0.255	0.282	0.464
BiNE	0.18	0.216	0.5	0.252	0.28	0.527	-	-	-	-	-	-	-	-	-
BiGI	0.191	0.23	0.526	0.255	0.293	0.536	-	-	-	-	-	-	-	-	-
DeepWalk	0.028	0.027	0.066	-	-	-	-	-	-	-	-	-	-	-	-
node2vec	0.032	0.029	0.063	-	-	-	-	-	-	-	-	-	-	-	-
LINE	0.061	0.063	0.16	0.242	0.262	0.477	0.182	0.196	0.315	0.155	0.166	0.284	-	-	-
NRP	0.191	0.244	0.567	0.212	0.236	0.464	0.509	0.542	0.745	0.287	0.308	0.534	0.222	0.23	0.436
BPR	0.209	0.253	0.568	0.258	0.278	0.519	0.497	0.511	0.709	-	-	-	-	-	-
NCF	0.185	0.209	0.493	0.212	0.215	0.458	-	-	-	-	-	-	-	-	-
NGCF	0.189	0.215	0.495	0.219	0.22	0.462	-	-	-	-	-	-	-	-	-
LightGCN	0.192	0.224	0.492	0.19	0.199	0.414	-	-	-	-	-	-	-	-	-
GCMC	0.151	0.182	0.463	0.234	0.244	0.491	-	-	-	-	-	-	-	-	-
CSE	0.211	0.234	0.483	0.26	0.296	0.55	0.54	0.555	0.753	0.317	0.343	0.58	-	-	-
LCFN	0.188	0.21	0.493	0.22	0.231	0.454	-	-	-	-	-	-	-	-	-
LR-GCCF	0.168	0.214	0.493	0.166	0.168	0.392	0.161	0.174	0.359	-	-	-	-	-	-
SCF	0.196	0.222	0.496	0.165	0.171	0.372	-	-	-	-	-	-	-	-	-

- 3 popular metrics: F1, NDCG, and MRR
- GEBE^p performs best in most cases
- Most CF-based methods neglect edge weights (only support implicit data), leading to inferior performance
- MHP is important for recommendation

Experiments: Efficiency

- GEBE^p is faster often by orders of magnitude.
- On MAG (1.1B edges)
 - ▶ GEBE^p takes 1.7 hrs.
 - NRP needs 11.8 hrs.
 - Other methods fail to finish within 3 days

Scalable and Effective Bipartite Network Embedding

Renchi Yang, Jieming Shi, Keke Huang, Xiaokui Xiao

THANK YOU