What is Effective Resistance (ER)?

- Effective Resistance
- Problem Definition
- Effective Resistance
- Applications of ER
 - Electrical Circuit & Power Network Analysis
 - Graph Sparsifiers
 - Graph Clustering
 - Recommendation Systems
 - Image Segmentation
- Problem Definition

1. The ER of node pair \((s, t)\) is a sum of the random walk probabilities of all possible numbers of hops between \(s\) and \(t\). It describes the dissimilarity of nodes \(s\) and \(t\).
2. Applications of ER
 - Electrical Circuit & Power Network Analysis
 - Graph Sparsifiers
 - Graph Clustering
 - Recommendation Systems
 - Image Segmentation

Efficient Estimation of Pairwise Effective Resistance
Renchi Yang and Jing Tang
Hong Kong Baptist University and Hong Kong University of Science and Technology (Guangzhou)

Reducing Random Walk Length
- Finding a Maximum Random Walk Length
- Utilizing Node Degrees
- On Facebook graph (#nodes=4k, #edges=88k)

Pruning Random Walks
- An Observation
- #Path & #Random Walks from Node \(s\) to Node \(t\)
- Combining Deterministic Graph Traversal and Random Walks in an Adaptive Manner

Limitations of Existing Work
- Existing works need either expensive matrix operations or a huge number of long random walks.
- The SOTA is a Monte-Carlo Approach
- Maximum Random Walk Length

Experimental Setup
- Dataset
- Experimental Results
- Our Maximum Random Walk Length
- Finding a Maximum Random Walk Length
- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)

- Error threshold \(\epsilon\)
- Maximum Random Walk Length
- Approximate Pairwise ER Query

- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)

- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)

- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)

- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)

- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)

- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)

- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)

- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)

- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)

- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)

- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)

- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)
- #Path & #Random Walks from Node \(s\) to Node \(t\)

- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)
- On Facebook graph (#nodes=4k, #edges=88k)