Homogeneous Network Embedding for Massive Graphs via Reweighted Personalized PageRank

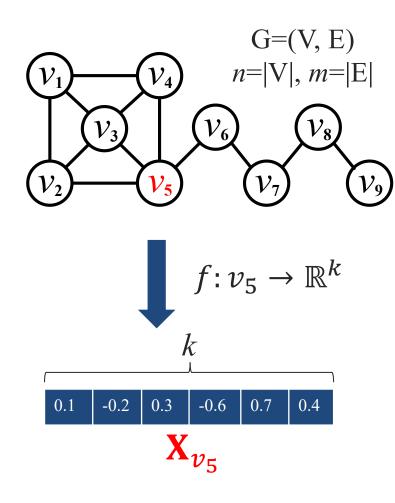
Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, Sourav Saha Bhowmick

August 2020

Outline

- Problem Definition & Applications
- Existing Work & Motivations
- Proposed solution: NRP
- Experiments

Homogeneous Network Embedding (HNE)



Link Prediction

[Backstrom *et al.*, WSDM'2011]
 [Gupta *et al.*, KDD'2013]

Graph Reconstruction

- [Radivojac *et al.*, Nature methods'2004]
- Node Classification
 - □ [Perozzi et al., KDD'2014]
 - □ [Ribeiro *et al.*, KDD'2017]

Existing Work

- Learning-based HNE methods
 - with random walks
 - truncated random walks: Deepwalk [Perozzi et al. KDD14],
 - *biased random walks*: Node2vec [Grover *et al*. KDD16],
 - *Personalized PageRank (PPR)*:VERSE [Tsitsulin *et al.* WWW18], APP [Zhou *et al.* AAAI]

$$\mathbf{X}_u \cdot \mathbf{X}_v \sim \Pr[u \to v]$$

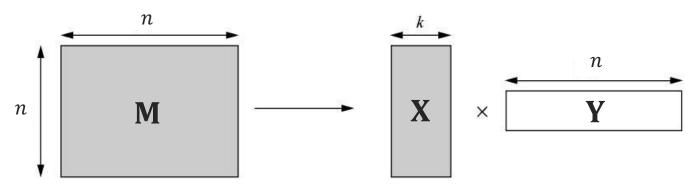
A large number of random walks are required !

- without random walks
 - Auto-encoders, graph neural networks (GNN), generative adversarial networks (GAN), long short-term memory networks (LSTM)

Expensive training courses!

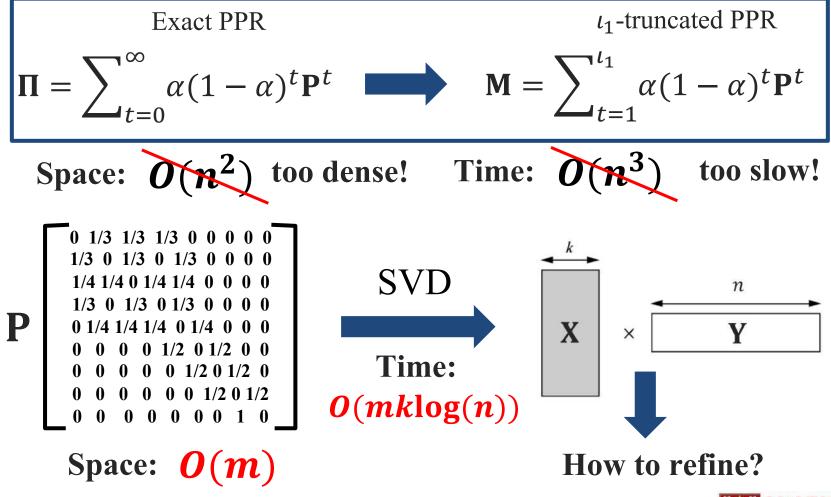
Existing Work

- Factorization-based HNE methods
 - Construct an $n \times n$ proximity matrix **M**
 - Katz score, AROPE [Zhang et al. KDD18]
 - PPR, STRAP [Yin et al. KDD 2019]
 - Factorize $\mathbf{M} = \mathbf{X} \cdot \mathbf{Y}^{\mathrm{T}}$ (*e.g.*, SVD, NMF)



 $0(n^2)!$

Motivations: Efficiency

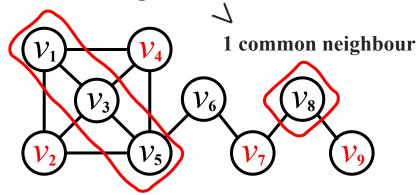


Motivations: Effectiveness

Table 1: PPR for v_2 and v_9 in Fig. 1 ($\alpha = 0.15$).

v_i	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
$\pi(v_2,v_i)$	0.15	0.269	0.188	0.118	0.17	0.048	0.029	0.019	0.008
$\pi(v_4,v_i)$	0.15	0.118	0.188	0.269	0.17	0.048	0.029	0.019	0.008
$\pi(v_7,v_i)$	0.036	0.043	0.056	0.043	0.093	0.137	0.29	0.187	0.12
$\pi(v_9,v_i)$	0.02	0.024	0.031	0.024	0.056	0.083	0.168	0.311	0.282

3 common neighbours



Potential link: $(v_2, v_4) > (v_7, v_9)$

$$\pi(v_2, v_4) + \pi(v_4, v_2) = 0236$$

$$< Why?$$

$$\pi(v_9, v_7) + \pi(v_7, v_9) = 0.288$$

$$How?$$
Neglect node global importance

Reweight nodes with weights !

Proposed solution: NRP

- Basic idea: $\forall v \in V$

 - A forward weight \vec{w}_v A backward weight \vec{w}_v P

- A forward embedding \mathbf{X}_{v} - A backward embedding \mathbf{Y}_{v} - A ba Preserve node proximity $\mathbf{X}_{\boldsymbol{u}} \cdot \mathbf{Y}_{\boldsymbol{v}}^{\mathrm{T}} \neq \mathbf{X}_{\boldsymbol{v}} \cdot \mathbf{Y}_{\boldsymbol{u}}^{\mathrm{T}}$

Preserve node global importance

$$\mathbf{X}_{u} \cdot \mathbf{Y}_{v}^{\mathrm{T}} \approx \vec{w}_{u} \cdot \pi(u, v) \cdot \overleftarrow{w}_{v}$$

- Challenges
 - Approximate PPR $\pi(u, v)$ for all (u, v) pairs efficiently
 - Learn \vec{w}_{n}/\vec{w}_{n} reflecting node importance

NRP: Step 1: Approximate PPR

$$\mathbf{P} \approx \mathbf{X}_{1} \cdot \mathbf{Y}^{T} \quad \mathbf{Y}_{1} = \begin{bmatrix} \mathbf{Y}_{v_{1}} \\ \mathbf{Y}_{v_{2}} \\ \mathbf{Y}_{v_{3}} \\ \mathbf{Y}_{v_{4}} \\ \mathbf{Y}_{v_{5}} \\ \mathbf{Y}_{v_{6}} \\ \mathbf{Y}_{v_{9}} \\ \mathbf{Y}_{v$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{X}_{v_1} \\ \mathbf{X}_{v_2} \\ \mathbf{X}_{v_3} \\ \mathbf{X}_{v_4} \\ \mathbf{X}_{v_5} \\ \mathbf{X}_{v_6} \\ \mathbf{X}_{v_7} \\ \mathbf{X}_{v_8} \\ \mathbf{X}_{v_9} \end{bmatrix} = \begin{bmatrix} -0.182, -0.014 \\ -0.18, 0.004 \\ -0.14, -0.002 \\ -0.18, 0.004 \\ -0.13, -0.008 \\ -0.182, 0.075 \\ -0.126, 0.072 \\ -0.092, 0.141 \\ -0.157, 0.236 \end{bmatrix}$$

$$= \sum_{t=1}^{\iota_1} \alpha (1-\alpha)^t \mathbf{P}^{t-1} \mathbf{X}_1 \quad \blacksquare \quad \mathbf{M} \approx \mathbf{X} \cdot \mathbf{Y}^T$$
$$O(mk\iota_1)$$

NRP: Step 2: Node Reweighting

- Intuition: 1 total strength of connections from other nodes to u = in-degree of u
 2 total strength of connections from u to other nodes = out-degree of u
- Objective function: $O = \min_{\overrightarrow{w}, \overleftarrow{w}} \sum_{v} \left\| \sum_{u \neq v} \left(\overrightarrow{w}_{u} \mathbf{X}_{u} \mathbf{Y}_{v}^{\top} \overleftarrow{w}_{v} \right) d_{in}(v) \right\|_{2} \qquad (1)$ by coordinate descent in $O(nk^{2})$ time $+ \sum_{u} \left\| \sum_{v \neq u} \left(\overrightarrow{w}_{u} \mathbf{X}_{u} \mathbf{Y}_{v}^{\top} \overleftarrow{w}_{v} \right) - d_{out}(u) \right\|_{2} \qquad (2)$ subject to $\forall u \in V, \overrightarrow{w}_{u}, \overleftarrow{w}_{u} \geq \frac{1}{n}.$
- Output: $\forall v \in V$

$$\mathbf{X}_{v} \leftarrow \overrightarrow{w}_{v} \cdot \mathbf{X}_{v}$$
$$\mathbf{Y}_{v} \leftarrow \overleftarrow{w}_{v} \cdot \mathbf{Y}_{v}$$

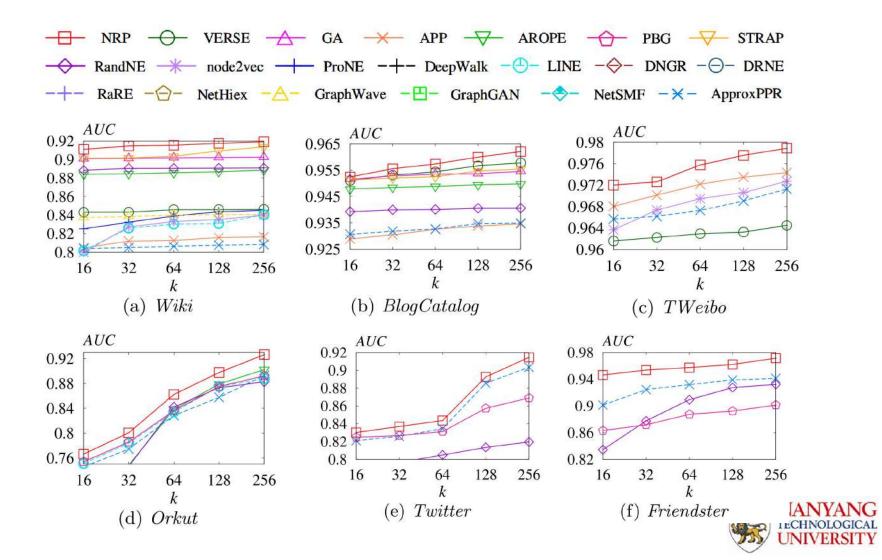
Experiments: Settings

Name |V||E|Type #labels Wiki 4.78K184.81Kdirected 40 undirected BlogCatalog 10.31K333.98K 39Youtube 1.13M2.99Mundirected 47 TWeibo 2.32M50.65Mdirected 100Orkut 3.1M234Mundirected 100directed Twitter 41.6M1.2BFriendster 65.6M1.8Bundirected _

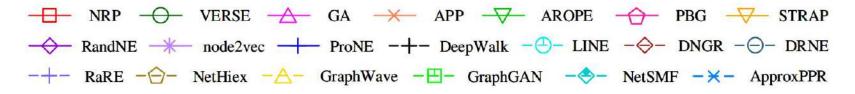
Table 2. Data Sets

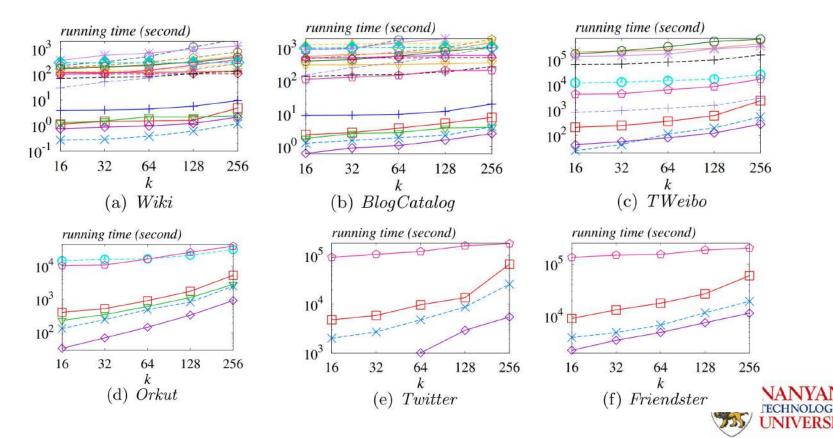
- NRP: $k = 128, \iota_1 = 20, \iota_2 = 10, \alpha = 0.15$
- ApproxPPR: k = 128, $\iota_1 = 20$, $\alpha = 0.15$ (without reweighting)
- an Intel Xeon(R) E5-2650 v2@2.60GHz CPU and 96GB RAM

Experiments: Link Prediction



Experiments: Efficiency





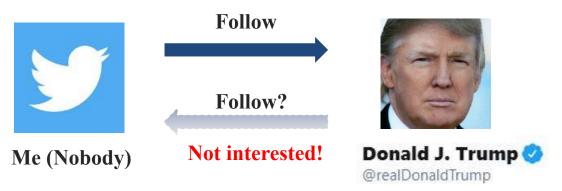
Thanks

Q & A

Why NRP Works

NRP preserves

- Multi-hop proximity between nodes (PPR)
- The global importance of nodes (Reweighting)
- Edge directions (forward/backward embeddings)
 - For example



Competitors

- Factorization-based
 - AROPE, RandNE, NetSMF, ProNE, STRAP
- Random-walk-based
 - DeepWalk, LINE, node2vec, PBG, APP, VERSE
- Neural-network-based
 - DNGR, DRNE, GraphGAN, GA
- Other
 - RaRE, NetHiex, GraphWave

Experiments: Graph Reconstruction

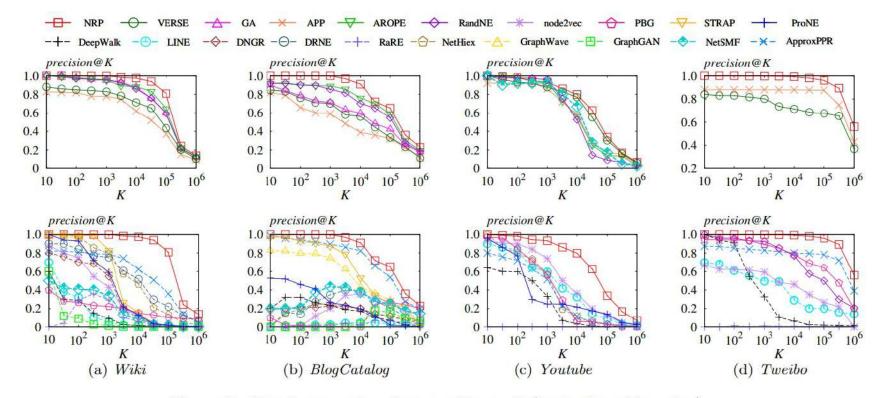


Figure 5: Graph reconstruction results vs. K (best viewed in color).

Experiments: Node Classification

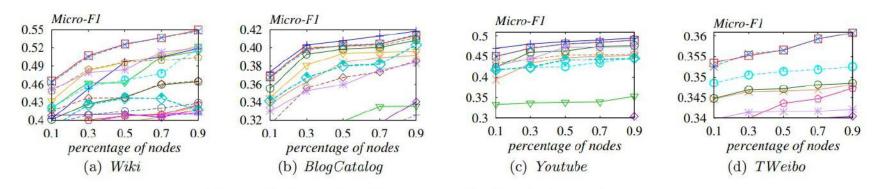


Figure 6: Node classification results (best viewed in color).

Experiments: Parameter Analysis

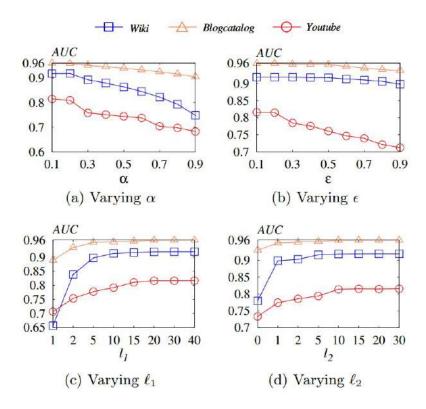
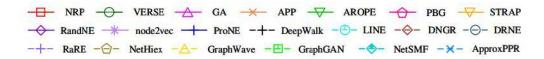


Figure 8. Link prediction results

Experiments: Link Prediction on Dynamic Graphs

Name	V	E	$ E_{old} $	$ E_{new} $	Type
VK	78.59K	5.35M	2.68M	2.67M	undirected
Digg	279.63K	1.73M	1.03M	701.59K	directed

Table 4: Dataset statistics ($K = 10^3$, $M = 10^6$).



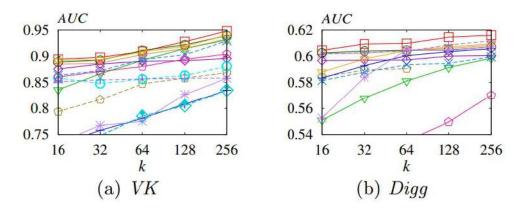


Figure 9: Link prediction performance on dynamic graphs (best viewed in color).

Experiments: Efficiency



Figure 10: Scalability tests.

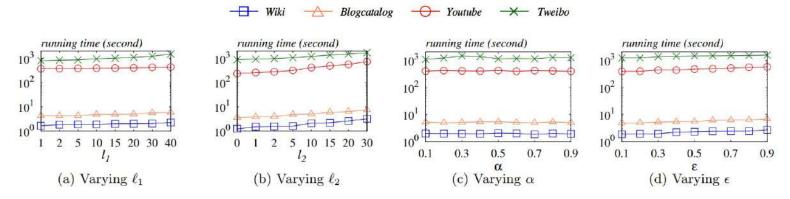


Figure 11: Running time with varying parameters (best viewed in color).

PPR Approximation

Algorithm 1: ApproxPPR

Input: A, D⁻¹, P, α , k', ℓ_1 , ϵ . Output: X, Y. 1 $[\mathbf{U}, \Sigma, \mathbf{V}] \leftarrow \mathsf{BKSVD}(\mathbf{A}, k', \epsilon);$ 2 $\mathbf{X}_1 \leftarrow \mathbf{D}^{-1}\mathbf{U}\sqrt{\Sigma}, \quad \mathbf{Y} \leftarrow \mathbf{V}\sqrt{\Sigma};$ 3 for $i \leftarrow 2$ to ℓ_1 do 4 $[\mathbf{X}_i \leftarrow (1 - \alpha)\mathbf{P}\mathbf{X}_{i-1} + \mathbf{X}_1;$ 5 $\mathbf{X} \leftarrow \alpha(1 - \alpha)\mathbf{X}_{\ell_1};$ 6 return X, Y;

Node Reweighting

Algorithm 2: updateBwdWeights

Input: $G, k', \vec{w}, \vec{w}, X, Y$. Output: \vec{w} 1 Compute $\xi, \chi, \rho_1, \rho_2, \Lambda$, and Φ based on Eq. (9), (10), and (13); 2 for $r \leftarrow 1$ to k' do 3 $\lfloor \phi[r] = \sum_u \vec{w}_u^2 X_u[r]^2$; 4 for $v^* \in V$ in random order do 5 $\begin{bmatrix} \text{Compute } a_1, a_2, a_3, b_1, b_2 \text{ by Eq. (9), (10), and (14);}\\ \vec{w}_{v^*} = \vec{w}_{v^*};\\ \vec{v}_{v^*} = \max\left\{\frac{1}{n}, \frac{a_1 + a_2 - a_3}{b_1 + b_2 + \lambda}\right\};$ 8 $\rho_1 = \rho_1 + (\vec{w}_{v^*} - \vec{w}_{v^*}') Y_{v^*};$ 9 $\begin{bmatrix} \rho_2 = \rho_2 + (\vec{w}_{v^*} - \vec{w}_{v^*}') Y_{v^*};\\ \rho_2 = \rho_2 + (\vec{w}_{v^*} - \vec{w}_{v^*}') \vec{w}_{v^*}^2 (X_{v^*} Y_{v^*}^{\top}) X_{v^*} \end{bmatrix}$ 10 return $\vec{w};$

Algorithm 4: updateFwdWeights Input: G, k', \vec{w} , \vec{w} , X, Y. Output: \vec{w} 1 Compute ξ , χ , ρ_1 , ρ_2 , Λ based on Eq. (24), (25); 2 for $r \leftarrow 1$ to k' do 3 $\lfloor \phi[r] = \sum_v \overleftarrow{w}_v^2 \mathbf{Y}_v[r]^2$; 4 for $u^* \in V$ in random order do 5 $\begin{bmatrix} \text{Compute } a'_1, a'_2, a'_3, b'_1, b'_2 \text{ by Eq. (24), (25), and (29);} \\ \vec{w}'_{u^*} = \vec{w}_{u^*}; \\ \vec{w}_{u^*} = \max \left\{ \frac{1}{n}, \frac{a'_1 + a'_2 - a'_3}{b'_1 + b'_2 + \lambda} \right\}; \\ \theta_1 = \rho_1 + (\vec{w}_{u^*} - \vec{w}'_{u^*}) \mathbf{X}_{u^*}; \\ \theta_2 = \rho_2 + (\vec{w}_{u^*} - \vec{w}'_{u^*}) \overleftarrow{w}_{u^*}^2 (\mathbf{X}_{u^*} \mathbf{Y}_{u^*}^{\top}) \mathbf{Y}_{u^*} \\ 10 \text{ return } \vec{w}; \end{bmatrix}$

NANYANG TECHNOLOGICAL UNIVERSITY

NRP

Algorithm 3: NRP

Input: Graph G, embedding dimensionality k, thresholds ℓ_1, ℓ_2 , random walk decay factor α and error threshold ϵ Output: Embedding matrices X and Y. 1 $k' \leftarrow k/2;$ 2 $[X, Y] \leftarrow ApproxPPR(A, D^{-1}, P, \alpha, k', \ell_1, \epsilon);$ 3 for $v \in V$ do 4 $\lfloor \vec{w}_v = d_{out}(v), \quad \forall w_v = 1;$ 5 for $l \leftarrow 1$ to ℓ_2 do 6 $\lfloor \overleftarrow{w} = updateBwdWeights(G, k', \overrightarrow{w}, \overleftarrow{w}, X, Y);$ 7 $\lfloor \vec{w} = updateFwdWeights(G, k', \overrightarrow{w}, \overleftarrow{w}, X, Y);$ 8 for $v \in V$ do 9 $\lfloor X_v = \vec{w}_v \cdot X_v, \quad Y_v = \overleftarrow{w}_v \cdot Y_v;$ 10 return X, Y;

