Scaling Attributed Network Embedding to Massive Graphs

Basic data analytics is easy.

<table>
<thead>
<tr>
<th>Stock</th>
<th>Profit</th>
<th>Revenue</th>
<th>Market share</th>
<th>Overvalued?</th>
<th>Buy?</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSLA</td>
<td>$721m</td>
<td>$31B</td>
<td>3.6%</td>
<td>Yes</td>
<td>???</td>
</tr>
</tbody>
</table>

Attributes:
- X_1
- X_2
- X_3
- X_4

Target attribute: Y
Graph data analytics is more powerful.

<table>
<thead>
<tr>
<th>Stock</th>
<th>Profit</th>
<th>Revenue</th>
<th>Market share</th>
<th>Overvalued?</th>
<th>Buy?</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSLA</td>
<td>$721m</td>
<td>$31B</td>
<td>3.6%</td>
<td>Yes</td>
<td>???</td>
</tr>
</tbody>
</table>
Graph data analytics is powerful but difficult.

<table>
<thead>
<tr>
<th></th>
<th>Single table data analytics</th>
<th>Attributed graph data analytics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tools</td>
<td> + google</td>
<td></td>
</tr>
<tr>
<td>Difficulty</td>
<td>★★</td>
<td>★★★★★★</td>
</tr>
<tr>
<td>Req. Skill level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We present Practical Attributed Network Embedding (PANE).

Embedding vector

Attributed graph data analytics

Embedding vector data analytics
Performance of PANE

Effective

Accuracy (F1): up to \(+17.2\%\)

Compared to SOTA Neural Network methods

Efficient

Single-server: \(~12\) hours

Computing all embeddings on a HUGE graph with 59m nodes, 0.98b edges, 2k attributes
Applications of PANE

Link Prediction

Attribute Inference

Node Classification
PANE is based on mostly novel database technologies (with a bit of machine learning flavor).

1. PANE measures Node-Attribute affinity via random walks.

2. PANE computes embeddings with joint matrix factorization.

3. PANE makes full use of multi-core parallel computation.
Types of Random Walks in PANE

Forward: node-to-attribute

Backward: attribute-to-node
Forward Random Walks

- Forward random walk from node u:
 - Start from u
 - At each step, stop with α probability
 - After stopping at a node v, pick an attribute r with probability $\propto w(v, r)$

- Intuition: it samples an attribute r from the vicinity of u
Node-Attribute Affinity

Node-attribute affinity:

$$F[u, r] = \text{normalized probability that a forward random walk from } u \text{ samples } r \text{ in the end}$$
Backward random walk from attribute \(r \)
- Randomly pick a node \(s \) with probability proportional to the weight of \((s, r)\)
- Start a random walk from \(s \)
- At each step, stop with \(\alpha \) probability
- Let \(v \) be the stopping point of the walk

Attribute-node affinity
\[
B[r, v] \leftarrow \text{normalized random walk probability from attribute } r \text{ to node } v
\]
Node-to-Node affinity is derived.

\[p(u, v) = \sum_{r \in R} F[u, r] \cdot B[r, v] \]

This saves a LOT of space: \(O(n^2) \rightarrow O(nd), d \ll n \)
Embedding Matrices in PANE

- We construct
 - two embedding matrices X_f and X_b for the nodes, and
 - one embedding matrix Y for attributes

- Optimization objective:
 - $X_f \cdot Y^T \approx F$, to capture node-attribute affinity
 - $Y \cdot X_b^T \approx B$, to capture attribute-node affinity
Solving the optimization program

- Jointly factorize F and B to obtain X_f, X_b, and Y
 - Formulate the joint factorization as a least square problem
 - Solve it using gradient descent
 - Use randomized SVD to obtain a good initial solution

- Time complexity: $O(mdt + ndkt)$
 - k is the embedding size
 - t is the number of iterations
 ($t = 5$ in our experiments)
Greedy Initialization + SGD

\[
F \approx U \cdot \Sigma \cdot V^T
\]

- \(X_f = U \cdot \Sigma, Y = V\)
- \(V = Y\) is unitary
- \(Y^T \cdot Y = I\)
- \(X_b = X_b Y^T, Y = B \cdot Y\)

Greedy initialization of embeddings via randomized SVD and the unitary property

For \(t\) iterations:
- Update \(X_f, X_b\) via SGD;
- Update \(Y\) via SGD;

\[
F \approx X_f \cdot Y
\]

\[
B \approx X_b \cdot Y
\]

Only a few iterations are needed!
PANE is fully parallelized on multi-core computers.

Explained in Section 4 of our paper.
Experiments: 8 Datasets

<table>
<thead>
<tr>
<th>Name</th>
<th># of nodes</th>
<th># of edges</th>
<th># of distinct attributes</th>
<th># of attributes per node</th>
<th># of distinct labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cora</td>
<td>2.7k</td>
<td>5.4k</td>
<td>1.4k</td>
<td>18.2</td>
<td>7</td>
</tr>
<tr>
<td>Citeseer</td>
<td>3.3k</td>
<td>4.7k</td>
<td>3.7k</td>
<td>31.9</td>
<td>6</td>
</tr>
<tr>
<td>Facebook</td>
<td>4k</td>
<td>88.2k</td>
<td>1.3k</td>
<td>8.3</td>
<td>193</td>
</tr>
<tr>
<td>Pubmed</td>
<td>19.7k</td>
<td>44.3k</td>
<td>0.5k</td>
<td>50.2</td>
<td>3</td>
</tr>
<tr>
<td>Flickr</td>
<td>7.6k</td>
<td>479.5k</td>
<td>12.1k</td>
<td>24.0</td>
<td>9</td>
</tr>
<tr>
<td>Google+</td>
<td>107.6k</td>
<td>13.7M</td>
<td>15.9k</td>
<td>2793.7</td>
<td>468</td>
</tr>
<tr>
<td>TWeibo</td>
<td>2.3M</td>
<td>50.7M</td>
<td>1.7k</td>
<td>7.3</td>
<td>8</td>
</tr>
<tr>
<td>MAG</td>
<td>59.3M</td>
<td>978.2M</td>
<td>2.0k</td>
<td>7.3</td>
<td>100</td>
</tr>
</tbody>
</table>
Experiments: 10 Competitors

- Default embedding dimensionality: $k = 128$

<table>
<thead>
<tr>
<th>6 neural-network-based methods</th>
<th>3 factorization-based methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>STNE [KDD 2018]</td>
<td>TADW [IJCAI 2015]</td>
</tr>
<tr>
<td>ARGA [IJCAI 2018]</td>
<td>BANE [ICDM 2018]</td>
</tr>
<tr>
<td>LQANR [IJCAI 2019]</td>
<td>NRP [VLDB 2020]</td>
</tr>
<tr>
<td>CAN [WSDM 2019]</td>
<td></td>
</tr>
<tr>
<td>DGI [ICLR 2019]</td>
<td></td>
</tr>
<tr>
<td>GATNE [KDD 2019]</td>
<td></td>
</tr>
</tbody>
</table>

- 1 other method
 - PRRE [CIKM 2018]
Results: Node Classification

- Percentage of nodes used for training: 10% ~ 90%
- PANE vs. SOTA: improvements of 3.4%-17.2% in terms of F1 measure
THANK YOU

Random walks

Joint matrix factorization

Parallelization

Best Paper Award

PANE
Scaling Attributed Network Embedding to Massive Graphs

Code: https://github.com/AnryYang/PANE